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A b s t r a c t - T h e  dynamics of a spherical bubble in a time-dependent electric field is investigated 
via the modified Rayleigh-Plesset equation where the effect of an elect.tic field is added. The effect 
of an imposed electric field is found to be equivalent to the increase of the ambient pressure by 
the amount of 3/8eoeIE~(2S- 1), where e,gt is the electric permittivity of the gas inside the bubble, 
Eo the strength of the imposed electric field, S the permittivity ratio of the outside fluid to the 
inside gas. The effects of a time-periodic electric field have been studied by using two methods 
of analysis; the two-timing perturbation analysis for the regular dynamics near the stable steady 
solution and the Poincare map analysis for the global dynamics. It is revealed that an 0(8 ~i:~) response 
in the oscillation of bubble radius can be obtained from an Off.) resonant time-periodic forcing in 
the neighborhood of a stable steady solution. By the Poincar4 map analysis, it is also shown that 
the bubble can either undergo bounded oscillation, or else respond chaotically and grow very rapidly. 
The probability of escape to rapid growth is found to be a strong function of the forcing frequency, 
of which the optimal value is slightly lower than the intrinsic resonant frequency of oscillation under 
the steady electric field. 

INTRODUCTION 

When the local pressure in a fluid falls below the 
vapor pressure, gas pockets may form and grow. This 
phenomenon is called cavitation. The pocket may be 
filled with gases, which have been dissolved or trap- 
ped in the fluid, and vapors of the fluid itself. The 

onsel of cavitation depends on many factors such as 
the size of nucleus, ambient pressure, amount of dis.- 
solved gas, vapor pressure, viscosity, surface tension, 
etc. The driving force for growth or collapse of cavita- 
tion bubbles is the pressure difference between the 

bubble interior and the ambient fluid medium. 
The problem of bubble growth associated with cavi- 

tation has broad banded application in numerous areas. 
Familiar examples in chemical engineering include the 
foaming process and the nucleate boiling process. In 
the researches for hydromachinery, major concerns 
have been given to the sound generation by cavitation 

bubbles that undergo t ime-dependent change of vol- 
ume. The damage to the blade surface caused by suc- 
cesive collapse of cavitation bubbles has been another 
important concern in that area. An ultra-sonic waw; 

*To whom all correspondences should be addressed, 

as a form of energy has been used in various applica- 
tions that are associated with cavitation. Rupture or 
fragmentation of suspended particles, emulsification 
of liquid mixtures, and dispersion of small particles 
are familiar examples. Recently, more exotic applica- 
tions have been reported. The phenomenon of cavita- 
tion induced by an ultrasonic wave is used to increase 

the chemical reactivities and to improve the micro- 
structure in solidification process Eli.  

On the other hand, there are many processes where 

cavitation is not wanted. Erosion and corrosion in- 
duced by cavitation are among the typical examples. In 
those cases, cavitation should be suppressed effec- 
tively. One of the suppression methods is to increase 
the ambient pressure. As an alternative, application 
of electric field has been considered [2]  and the pre- 
sent work is also about the alternative method. An 
imposed electric field exerts an extra surface force 
to the bubble surface and has an effect that is equiva- 
lent to the increase of the ambient pressure  For a 
given pressure difference, a steady electric field may 
suppress the formation and the growth of bubbles, 
which would grow rapidly in the absence of an electric 
field. 

The literature on the bubble dynamics is very exten- 
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sive, but earlier works are fairly well summarized 
in the review article by Plesset and Prosperetti [3]. 
Thus, only the works that are directly related to the 
present work are discussed here. The problem of ca- 
vitation was first considered by Lord Rayleigh [4-1. 
Later Plesset extended Rayleigh's theory to set up 
the governing equation for the cavitation problem, 
which is now known as the Rayleigh-Plesset equation 
(see the reference [3]). Recently Chang and Chen 
l-5] applied the theory of nonlinear dynamics to the 
Rayleigh-Plesset equation to predict the condition for 
cavitation under steady ambient pressure field. The 
work of Chang and Chen was further extended by 
Szeri and Leal [16] to include the effect of time-depend- 
ent pressure field. However, their analysis was in- 
tended mainly to estimate the condition ot cavitation 
and the dynamics of a bubble under time-periodic 
pressure field was not discussed in detail. 

In the present work, we are concerned with the 
effects of an electric field on the bubble dynamics. 
We are interested primarily in the dynamical respon- 
ses of a bubble in a time-periodic electric field. As 
discussed in the above, imposing an electric field is 
equivalent to the increase of the ambient pressure 
if the sphericity of bubble shape is assuraed. Thus, 
an electric field can be considered as an alternative 
tool for controlling the ambient pressure field. That 
is the case especially when the pressure control is 
difficult. In the qualitative and mathematical senses, 
the present problem is very much similar to the prob-- 
lem of bubble dynamics in time-periodic straining 
flows. Thus, we follow very closely the work of Kang 
and Leal [7], who analyzed the effects of a time-pe- 
riodic straining flow by using the Poincar~ map analy-- 
sis. As will be shown later, the Poincar~ map analysis 
will prove to be an effective tool for understanding 
the complicated dynamical behaviors of a bubble in 
a time-periodic electric field. Furthermore, the analysis 
will show that a time-periodic electric field may be 
used to promote cavitation in a fluid, although a steady 
electric field is mainly employed to inhibit the cavita- 
tion. 

D E R I V A T I O N  O F  D Y N A M I C A L  E Q U A T I O N  

We consider a spherical bubble in a quiescent fluid 
which is undergoing gro'aeth or collapse in the pres- 
ence of a time-dependent electric field E00!) as shown 
in Fig. 1, The interior and exterior of the bubble are 
indicated by '1" and '2 '  respectively. The bubble in- 
terior is composed of some permanent gas and the 
vapor of the surrounding fluid at constant tempera- 

i @ "r 
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c +  

Fig. I. A spherical bubble in a quiescent fluid in the pre- 
sence of a time-dependent electric field. 

ture. The fluids in both sides of the bubble are as- 
sumed to possess uniform and isotropic material prop- 
erties, such as viscosity(~), density(p), electric conduc- 
tivity(G) and relatiw~ permittivity(e). For convenience, 
we define the ratios of the material properties as 

S e2 M=- ~ .  R~ ~ - :-- ,  (1) 
G2 E:I ~11 

For common fluids, R, S, and M are not zero and 
have finite values. For the case of bubble, R<." 1 and 
S. M_>I, since the fluid inside the bubble is nearly 
nonconducting and inviscid. We also assume that the 
surface of bubble is characterized by a uniform surface 
tension y. The distributions of electric field inside and 
outside the bubble can be obtained via the electric 
field potential that is defined as E . . . .  v~t. When the 
free charge is absent within the fluid media and the 
permittivities are uniform, the governing equations for 
the electric potentials are 

v 2 ~ = 0 ,  v~2:= 0. (2) 

The corresponding boundary conditions are [8]: 
B.C.1 The field be finite at the origin (r= 0). 
B.C.2 Tangential component of the electric field be 

continuous at the interface, i.e. n •  
Hence, 

0W _ 0V'_, at r = a  (3) 
as as 

where a is the radius of bubble and s is the 
arclength along the bubble surface. 

B.C.3 Conduction current normal to the interface 
be continuous, i.e. n - [ J ]=O,  where J = ~ E  
for ohmic fluids. Hence 

o~-~n~ = G ~ •  at r = a  (4) 

where derivatives are evaluated in the direc- 
tion of the outward normal vector n. 

B.C.4 Electric field at infinity is unidirectional, i.e. 
E2~E0(t)e, as r-->m. Hence 
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V ~ - * - E , , ( t ) e ,  as r-+oo (5) 

where Eo(t) is the magnitude of electric field 
at infinity. 

One comment should be given here to the boundary 
condition (4), In the case of no free surface charge, 
the normal component of electric displacement must 
be continuous across the boundary, i,e. 

0~t 0~._, (6) 
e , ~ n  n =~2-~n at r=a.  

Thus, we can see from (4) and (6) that o~/o~=~/t~, 
i.e. R S =  1 in that case (see pp. 216-217 of the book 
by Nafeh and Brussel [9.]). 

Since the bubble shape is assumed to be spherical, 
it is convenient to solve the problem using the spheri- 
cal coordinate system, with the axis of symmetry cor- 
responding to 0 = 0  and 0 = n  as shown in Fig. 1. The 
solutions for the electric potentials are easily obtained 
by the method of eigenfunction expansion as (see Mel- 
cher and Taylor [8])  

Or , R + 2 /  cosO, 

1 Or, E {  3 ) 
e , . :  - 7 - N  : - ~  o, 

E,~= 0~'~ t / 1 - R ~  2a :~ o, ] coso, 

1 OVz E , , [ I + ( 1 - R ]  a:' l E,2 = sin O. (7) 
r O0 t \ ~ , ~ - f i - J  

In the above, it is worthy of note that the electric 

field inside the bubble is uniform, i.e. 

E: = R--~Eo(t)e~. 
The stress resulted from the electric field can be 

evaluated by using the Maxwell stress tensor defined 

as 

i 'I "P = ~:IleEE- "~-e!~ ~ - (8) 

where e0 is the permittivity in vacuum. Thus the elec- 
trical surface force density on a spherical surface is 

obtained as 

t~ = n . T =  n - ' ~ -  n-T'~ 
= (T~ - T;,~)e, + (T,02 - TLt)e~ 

= t . e . +  t~eo. (9) 

where t,, and l, are the normal and tangential compo- 
nents of the surface force density. From (8) 7;, and 

T,0 are expressed as 

1 E~ . 

7;0 = ~r163 (10) 

Then we can obtain t,~ and t~ at the bubble surface 
as 

9 " ~'~ ~ + 9 t,,:g~,~.':,(~_~L{s(k ~ a)-_} cos~0+(1--s)~, 

, ,  ( 1 - R S )  
t:, 9a~0a  ( ~  cosO sinO. (11) 

As we can see above, the normal stress is not uni- 
form along the bubble surface. Thus, the bubble would 
deform into a spheroidal shape if the surface tension 
is not sufficiently strong. Here, however, for simplicity 

in analysis we take a critical assumption that the shape 
of the bubble remains spherical during the whole pro- 
cess of growth and collapse. To obtain the effects of 
electric field under  the assumption of spherical shape, 
we take averages of the normal and tangential contri- 
butions of the electrical surface force over the entire 
surface to have 

(l,'/ = ~ f t.(O)dA 

�9 [ )~ ; 

@ = A f t,(O)dA :O. (12) 

For the case of a bubble in which R<<I. ( l , )  reduces 
to 

3 ,, 
( t . , )  = - ~ - s ~ s  1). (13) 

Therefore the electric field exerts a suppressive force 

on the bubble surface since (t,~) is negative for usual 
bubbles (S>>I). In (12) and (13), it is noteworthy that 
(J,,) is independent of the bubble radius and the rela- 
tions hold even for the limit a-~,0. 

Now, we consider the motion of the interface indu- 
ced by changes in the volume of a single spherical 
bubble that is :suspended in an incompressible and 
Newtonian fluid in the presence of an uniform electric 

field, tn order to predict the bubble radius as a func- 
tion of time in the presence of a prescribed ambient 
pressure field and an electric field, we begin with the 
Rayleigh-Plesset equation (for derivation of this fa- 
mous equation, see the book by Leal [10~) 

3 , 1 -  ~ + 1 
a~ ~- -~h ~ = -o i p,(T ) p~(t)-p.  (t)., 

1 
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where p,., pe, p~ are the vapor pressure of the ambient 
fluid at the bubble temperature, the pressure contrb 
bution of the permanent gas, and the ambient pres- 
sure, respectively. In general, thermal effect plays an 

important rote on the dynamics of a gas/vapor bubble. 
However, we restrict our concern only to the isother- 
mal cases and use the ideal gas law for the conven- 
ience in analysis. The contribution due to the perma- 
nent gas can then be represented as 

p~,(t)= a: ~ a: !, 

where G and G are appropriate constants. Thus, we 
have 

... 3. . ,  l r  . . . . . .  + l i G  2u 4btdz] 
7 " - =  ..... - 2 - 1  (15) 

As we have seen in (12), the electric field has an effect 
of increasing the ambient pressure by -(,t,,) and we 
thus have the modified Rayleigh-Plesset equation as 

a. . ,  1 . . . . .  t ,~+ l [ &  2u 4~-1  
7-kTii -g--72t 

+ 2p(R+9C'~'a~12) ~ [_~_ tS(R:, + 1)_ 2} + (i_ S ~ . .  
(16) 

For the c~se of a bubble in which R(<I,  

~ 3  z 1 

' a a J - - - - - ~  - - "  * 

(17) 

Now, let us nondimensionalize the modified Ray- 
leigh-Plesset equation, where the effect of an electric 
field is included. We may choose one specific ambient 
p r e s su re /~  as the characteristic pressure sca!e. But 
the problem here is that we do not have an explicit 
length scale for this problem because the bubble ra-- 
dius itself is a dependent variable. Thus, we choose 
one of the equilibrium radii, [~:, for the given ambient 
pressure P~::D, as the characteristic length scale. 
When a steady electric field is present and R<<I+ the 
equilibrium radius can be obtained from 

pL ,~ J p L a s:; a ~:" _i 

As will be shown later, (18) has either zero, one or 
two physically meaningful (positive) solutions depend- 
ing on the parameters. Thus. ~ must be an ambient 
pressure that ensures the existence of a positive solu- 

lion, and we choose the smaller radius as our charac- 
teristic scale in the case of two positive solutions. The 
nondimensionalized equation with the characteristic 
scales 

- -  p a  E /~ 

is then 

" 3 " ,  4 'ii - A P T  ~ 3-W(t )~ , (2S-  
aa + 2-a'- + - - 

1) 

M B  2 
+ . . . . . . .  (19) a :~ a 

where gz=a/~: and the dimensionless parameters are 

~" (0&u R e ~  A ~ .  = 

B ~ r  ..... pressure force 
y surface tension force '  

M-~=G~ - AP(t)  P~'-P~ 
P.,ai: ' ])., 

e~s electric force 
W(t)=. 

y surface tension force 

In the above, W(t) is termed the (electrical) Weber 
number in the sense that the number represents the 
ratio of the deforming electrical force to the restoring 
surface tension force. 

At this point, it is appropriate to estimate the values 
of the timescale, t,., and the damping coefficient, 1~Re, 
for the cavitation bubbles in aqueous solution. For 
simplicity, if we assume u dyne/cm, then L= 
10 lsec, 10 4sec, and 10-7 sec and 1/Re=lO <, 10 -2, 
and 10  ~ for a~:=: 1 cm, 10 2 cm. 10 ~ cm respectively. 
Thus, we can see that if the bubble radius is smaller 
than O(10 :~)cm, then L<O(10 S)sec. Thus, the charac- 
teristic timescale is in the range of ultrasonic wave 
(ultrasonic wave has the frequency over 0(2 X 104)Hz). 

STEADY SOLUTIONS 

Now we consider the equilibrium solution of (19) 
for the case of steady pressure difference (AP=con-  
slant) and steady electric field [W( t )=W=cons tan t ] .  
In that case, (19) reduces to 

3 W  2 1 M 
~-~,(2S- 1) = . (20) 

In Fig. 2, plots of AP versus ~: are shown for several 
Weber numbers in the case of B=0.5, M =  i, S =  t00, 
and e~ = 1. As we can see in (20) and Fig. 2, the effect 
of an imposed electric field is merely a shift of the 
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Fig. 2. Equilibrium radius tie as an inverse function of the 

pressure difference when the Weber number W =  0, 
W = 0 . 0 2 6 8  and W = 0 . 0 5 .  
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Fig. 3, Equilibrium radius ~iL, as an inverse function of the 
Weber number for various values of the pressure 
difference. 

plot by the amount of (3/8) (W/B)r in the di- 
rection of AP axis. From Fig. 2, we see also that Eq. 
(20) has no positive solution if At~ exceeds a certain 
value AP~,,t. Physically, it means that if AP>AP,, .  a 
bubble grows indefinitely, i.e. cavitation occurs. Thus. 
it is important to estimate that value. To do that, we 
get the critical radius h~t where AP has the maximum 
value, The results are 

_ /-3BM . / 32 3 B WE~(2S__I). 

(21) 

By substituting the definitions of the dimensionless 
parameters, we can represent the results (21) in di- 

mensional form as 

From Fig. 2, we can see that when AP<M~.. .  two 
equilibrium radii are possible if 

83 ~ ( 2 S -  1)<AP<AP,,~, 

and only one equilibrium radius is possible if 

A P < 3  Wc,(2S - 1). 

For the case of two equilibrium solutions, as will be 
shown shortly in next section, only one of two solu- 
tions is stable. If the equilibrium radius is larger than 

than ,~- is unstable and physically not attainable. 
There are limiting values of W for existence of steady 

state solution for fixed values of AP. Fig. 3 shows 
W versus aE plots for case of B = 0.5, M:= 1.0, S = 100 
and at = 1.0. As we can see in Fig. 3, if AP>3.079, 
there are critica~ Weber numbers lu and 14-',e for exist- 
ence of steady solutions. The number of steady solu- 
tions is 0 if W<WIL, 2 if W,~<W<W,~. and 1 if W>W,2. 

At this point, it would be appropriate to discuss in 
more detail the case of permanent gas. In this case, 
G = 0  (and so M=0),  and (20) has only one solu- 

tion 

2 (23) 
&: BAP-(3/8)Wzl(2S ' -  1) " 

This solution is unstable in the sense that the bubble 
grows if a>aF, but shrinks if ~<[z~-. Thus. the equilib- 
rium radius of (23) is called the critical radius fo the 
homogeneous nucleation of vapor phase. Since S = e j ~ ,  

(23) reduces to 

2 

when S~, 1. As we can see in (24), the imposecl steady 
electric field makes the critical radius larger and thus 
inhibits homogeneous nucleation, The result (24) was 
obtained earlier by Marston and Apfel [2]. 
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Fig. 4. Phase-plane portraits for the dynamics of a bubble 
in a steady electric field when A P = 5 ,  B=0.5, M =  
1, S =  100, e~= ! and there is no viscous damping. 

D Y N A M I C S  

1. D y n a m i c s  of  a b u b b l e  in a steady" e lec tr ic  
f ie ld  

Now we consider the full dynamics of the Rayleigh- 
Plesset equation in terms of the nonlinear dynamics. 
Let us begin with the case of steady electric field [W 
(t)= IV=constant3. By defining x v ~  and x ~ = ~ = ~ ,  a 
system of equations is obtained from the Rayleigh~ 
Plesset equation in dimensionless form as 

�9 3 X~ 4 x~2+BAp1 3Wz , (2S_ l )  l 
x,:= 2 x~ Re x~ ~ x~ 

2 MR 
~ :  ~f~(x~, x~). (25) 

The best way to study the dynamical systems such 
as one given in (25) is to use phase-plane portraits. 
In Fig, 4, there are three phase-plane portraits for 
the case of no viscous damping (tIRe=O) and A P = &  
In the cases of W=0.014 and 0.0168, there exist two 
steady solutions, but no steady solution exists when 
W= 0.012. Remind the fact that there exist two equili- 
brium solutions when [~t<W<W~.2. In the case of W= 
0.0168, the (x~, x2) phase space has two equilibria at 
(0.65, 0) and (1.4, 0). As well known, each contour 
in the phase-plane portraits of the Hamitonian case 
represents the equi-energy line. Thus, the equilibrium 
solution at (0.6,5, 0) has a local minimum energy and 
corresponds to a center or elliptic point, while the 
equilibrium solution at (1.4, 0) corresponds to a saddle 
point in the energy distribution and is unstable. One 
more thing we should note from Fig. 4 is that there 
exists a separatrix which starts from and end at the 
saddle point and encircles the stable equilibrium solu- 
tion. Therefore the bubble may grow very rapidly 
even in the case of W:~<W<W,2, if the initial condition 
is outside the separatrix, This behavior cannot be pre- 
dicted by any linear theory and is certainly due to 
the nonlinear effect. 

Before going on to the dynamic response to a time- 
periodic forcing of the electric field, let us discuss 
the effect of electric field on the natural frequency 
of oscillation about the stable equilibrium solution. We 
define deviation variables, y~ = x~ - xl,, Y2 =x~ - x~, where 
x~, and x~ are the stable steady state solutions. From 
the linear stability analysis, we may obtain the frequen- 
cy of oscillation as a function of xl,, 

o~,= 3MB 2 (26) 

where o~ is the natural frequency of oscillation. The 
dependency of natural frequency on the electrical We- 
ber number is shown in Fig. 5 in the case of B=0.5, 
M =  1.0, S =  100, r t.0. We can see that the natural 
frequency of oscillation increases as the Weber num- 
ber increases. Since the increase of the Weber number 
is equivalent to the decrease of the pressure differ- 
ence, the frequency of oscillation increases as the pres- 
sure difference decreases. As we can see from Figs. 
2 and 3, the stable equilibrium radius decreases as 
the Weber number increases or the pressure differ- 
ence decreases. Since the smaller bubble oscillates 
faster than the larger one, the frequency increases 
with the increase of W. One more thing we can note 
from (26) is that the oscillation frequency becomes 
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b5. The natural frequency as a function of the Weber 
number (other parameters are the same as in Fig. 
4). 

exactly zero at the critical radius. This can be easily 

verified by Eqs. (21) and (26). 
2. Regular  d y n a m i c s  of  a bubble  in a t ime-peri-  
odic  electric field 

As we have seen in Fig. 4, for the case of steady 

electric field with no viscous damping, the dynamical 
syslem (25) is a Hamiltonian system with a saddle 
point and a center. Now" we are interested in the dy- 
namical behaviors of a bubble subject to a time-de- 
pendent electric field. We consider first the case of 
a time-periodic electric field which is given as 

E(t)-E~>(l +_ c cosod). 

Then the Weber number  is 

W(t) = I~;~( 1 _+ g cos mt )~ =: I'Ve,(1 -+ 2~ cos~ot) + O(d). 

The behaviors of a dynamical system with time-t~- 
riodic forcing can be best investigated via the Poincar~ 
map analysis. In fact the Poincare map is nothing but 
a phase-plane portrait for which the data are taken 
only for the times that are multiples of given forcing 
period (see references such as Guckenheimer and 
Hohnes [11]). Thus, for a Hamiltonian system with a 
steady forcing, the Poincare' map and the usual phase- 
plane portrait are identical. The question now is what 

kind of change is expected in the Poincar~ map for 
the case of time-periodic forcing. Near the elliptic 
point, almost all of the closed orbitals on the Poincard 
map are preserved when e is small due to the Kotmo- 
gorov-Arnold-Moser (KAM) theorem (see Guckenbei- 
mer and Holmes). Therefore we consider first the re- 
gular dynamical response, in the sense that the dyna- 
mics can be studied analytically, to the small ampli- 

tude oscillation of the electric field with the assump- 
tion that the deviation of the bubble radius from /& 
is small. Then the system (25) is changed to give 

k = x ~ y i ( x ,  x D 

3 x~ 1 2 
- XI X{ 

=L,(xl, &). (27) 

In terms of disturbance variables y~, y., defined earlier, 

(27) is expanded up to O(},{), O0.'tye), 004) and to the 
order of O(~:). Then, 

y~ = -- m~Yi 4- Cy~+I)y~T eF~*e~, costa/. (28) 

where mr, is the intrinsic frequency of oscillation for 
the case of W:-g/;~ which was mentioned earlier and 

BA P + 10MB 6 3 Iu 1 ) 1 7  C 
xD x',', x l~ 8 xi, 

3 1 ~ g 1 ( 2 S - 1 ) .  D : - 7  7U F :  

By defining u=:y~ and /~=Ye for convenience. (28) can 
be represented as 

ii + a)& - Cu :~ - D i e '  = u e(Fg{,)cosmt. (29) 

The dynamical natures of (29) has been thoroughly 
studied previously by Kang and Leal E7] and Kang 
I ~9-~ for the analysis of similar problems in the bubble L •  

and drop dynarnics. Thus. here we touch the equation 

very briefly. 
The abnve dynamic equation for an inviscid bubble 

near the stable steady state is now investigated up 
to the square terms in resonant cases. We define ~=:e 
(FW,,) and consider the resonant case where m::::o~,,. 

Then (29) becomes 

ii + eo~u - Cu"- - DiZ-' -- T k cosmt. (30) 

The response of a nonlinear oscillator to a weak peri- 
odic forcing at a resonant frequency is often characteri- 
zed by multiple time scales. As shown by Kang and 
Leal [7]  and Kang El2], the resonant resl:,onse of 
the above dynamical equation for small k is O0} l:~) 
and exhibits two-timing behaviors. Therefore a slow 
periodic oscillation (which has a long-time-scale varia- 
ble r) is superposed on a higher frequency oscillation 
that is near the forcing frequency. In this case, the 
analysis for the resonant response requires the so-cal- 
led two-timing or twu-variable expansion procedure, 

i . e .  
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0.5 1,0 1,5 2.0 

X 1 

Fig. 6. The Poincare map for the case of exact resonant 

forcing (,~0=t,~,=2.398) when e=O.01, W~:0 .0168  
(other parameters are the same as in Fig. 4), 

r = U  :' t, 

u(L ":) = lg.e ":~ g,,(t, ":). (3t) 
n 

The scalings in (31) can be found without difficulty 
(Any interested reader may consult the book by Nafeh 
and Mook [133). The O(fi ~::~) solution is found to be 

u(t, v ) ~  ~::~ A(~)cos~cot~"0(~)] (32) 

where A(r) and O(~) satisfy a system of equations 

dA 1 
d~" = "- 2r sin,,  

4 dO (5C-' + 5CDo~ ~ +" 2~%~M :~ c,.qs~ 
" ~ d ~ -  12to :~ +: 2m " (33) 

"['he significance of (32) is that the nonlinearities in 
the system amplifies O(~) resonant forcing to produce 
O(~ ~:~') output. The fixed points, where both O and A 
are time-independent are found to be (,4*, n) for 
cos wt forcing and (,4*, O) for - ~ c o s  o)t forcing, 

where 

A* - [ 6r :~ }/2. 
(34) 

At the fixed points, both A and 0 are time-independent 
and a bubble undergoes oscillation with a fixed ampli- 
tude and a phase shift as we can see in (32). 

The two-timing solution may be transformed to the 
Poincare map directly by substituting t=nT ,  where 
T is the period of forcing, i.e. T=  2r~/a~. Then, in terms 
of x~ and xe the Poincare map is obtained as 

x,(nT) = u ( n T )  +x~,~ ~ ~:~ AO:,,)cos(O(~,~)) +.r~ 

2 - i  

1-4 

0- 

1- 

0.0 03 1,0 1.5 2.0 
X 1 

Fig. 7. The Poincare map for the case of exact resonant 
forcing ( ~ = ~ , = 2 . 3 9 8 )  when ~ = - 0 , 0 L  g%= 
0.0168 (other parameters are the .same as in Fig. 
4). 

1-.t 

p 
L 

o,o 

W =  0,0168 

0,5 1.0 1.5 2.0 
x~ 

Fig. 8. The Poincar~ map for the case of nearly resonant 
forcing ( ~ = 2 . 3 4 8 )  when ~=0 .01 ,  Wi~=0.0168. 

xz(n T) = h (n T ) ~  {~:~:~ oxa (%) sin(o(~: 3) (35) 

where v,,::~:~(nT). We can see that the fixed point 
in the Poincarc; map has shifted from eItiptic point 
by ( -A*,  0) for ~ cos o~! forcing in (30) and (.4*, 0) 
for - ~  cos cot forcing, tn Figs. 6 and 7, the Poincar~ 
maps generated by numerical integration of the full 
dynamical equation (27) are given. As we can see, the 
fixed points are shifted by (A*, 0) for e=0.01 and 
(---A*, 0) for - a  = -0.01 as predicted by the two-tim- 
ing analysis (note the sign change in the second equa- 
tion of (27)). 
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~2 

2-a 

14 

o 4  

14  

W = 0,0168 

2.1  , i i 1 
0.0 0.5 1,0 1,5 2.0 

x 1 

Fig. 9. The Poineare map for the case of nearly n = 2 re- 
sonant forcing (m=4.7) when ~:=0.01, W0=0.0168. 

In Fig. 8. a Poincar~ map is given for a nearly reso- 
nant case (co: 2.348) which is slightly lower than the 
intrinsic frequency o~, (=2.398). By comparing this 
case with the case of exact resonance in Fig. 6. we 
can see that the resonance effect is even stronger at 
a frequency that is slightly lower than ~he intrinsic 
frequency ~oo, This phenomenon of stronger resonance 
at slightly lower frequency than the intrinsic frequen- 
cy was predicted by the two-timing analysis in Kang 
E12L 

If the forcing frequency is far from ooo, no interest- 
ing results are expected up to the leading order solu- 
tion, but a multiple timescale response is expected 
for ~o~ntoo when we consider higher order solutions. 
As an example, the Poincare map for m::4.7~2m, is 
presented in Fig. 9. 
3. Chaotic  d y n a m i c s  o f  a bubble  and e s c a p e  to  
rapid g r o w t h  

Every trajectory of a dynamic system comes from 
somewhere and goes somewhere. Vew exceptionally. 
a trajectow comes from a saddle and also goes to an- 
other saddle. Such a trajectory is called a saddle con- 
nection, or a heteroctinic trajectow. It is even possible 
for a trajectory." to connect a saddle to itself. This tra- 
jectory is called a homoctinic trajectory (or a homocli- 
nic orbit) (see references Fll ,  14] for the terminok> 
gies in the theow of nonlinear dynamics). In fact, the 
phase plane portrait in the present problem possess 
a homoclinic orbit if W~, < W< l.t,;z (see the phase plane 
portraits in Fig. 4 which are the same as the correspond- 
ing unperturbed Poincare maps). The dyt:amical sys- 
tem with a homoclinic or heteroclinic orbit under 
steady forcing is known to exhibit very complicated 

P~(R) 
~ \  a P4(R) t ./ P (R) _v.e , p "  

Fig. i0. A schematic representation of the homoclinic tan- 
gling phenomena in the Poincare maps. 

behaviors when the system is subject to a time-peri- 
odic forcing. The complicated dynamical behav:iors have 
been studied via the concept of homoclinic orbit tan- 
gling in the Poincar~ maps such as one shown in Fig. 
10. The concept of homoclinic orbit tangling is well 
explained in the references [1t, 14~. Any interested 
reader can consult the references. However, very 
briefly and roughly, it can be stated that if the initial 
condition is in the region of homoclinic tangle then 
the bubble will eventually escape to rapid growth. 

D)r an illustrative purpose, let us define tb.e inside 
region R., as the region bounded by the stable mani- 
fold (solid line) for x2kO and unstable manifokl (dotted 
line) for xe<0 in Fig. 10. If a point is in the region 
R < R,,, at a certain time. then the point is mapped 
after each period to the points in the shaded regions 
according to the sequence 

R- .P(R) -~p~(R) - .p :~(R)  . . . . .  , 

Thus, a point in the tangle region in R,,, will exhibit 
apparently random motion for a while and will be pu- 
mped to the outside of R,. eventually. In Fig. 10, we 
should note that the region t~'(R) is extended indefi- 
nitely as the unstable manifold approaches the saddle 
point, since the area of each shaded region has the 
same area for the Hami!tonian case (see Guckenhei- 
mer and Hohnes ~11~1). Once the point is pumped 
out, then both x, and xe will increase indefinitely. 

As we have seen in Fig. 10, the domain of R~,, can 
be divided into two parts as R , , : = R . . , + R . . .  where R,,~ 
and Rn,,, denote the regular and chaotic regions and 
R,h,, is defined as R.., =(  U :, , t~*(R)) ('~ R,,,. Physical- 
ly. if the initial condition of a bubble is at some point 
in R., .  c R,,, the bubble escapes eventually to the rap- 
id growth stage after several periods. During the sev- 
eral periods of forcing, the bubble will exhibit chaotic 
oscillation as will be shown later by the plots x~ vs. 
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W = 0 . 0 1 6 8  
co = 2 . 3 4 8  

:N.:=,.~ e = 0.05 

s i : i I 
0 . 5  1,0 1.5 2.0 

X I 

Fig. I I. The Poincar~ map for the case of nearly resonant 
forcing (o>=2.348) when ~=0.05,  W0==0.0168. 

t. On the other hand, if the initial condition is in R~,,,, 
the bubble can never escape to the rapid growth stage 
and it shows bounded oscillation. In fact, the Poincare 
maps in Figs. 6-9 were prepared by integrating the 
governing equations starting from the initial distribu- 
tion of points along the x2=0 axis. As we can see 
in the Poincare maps, there are two regions in R,,; 
one is quite regular and the other looks randorn. Thus 
the size of regular region indicates the region for the 
initial conditions for bounded oscillation. If the size 
of the regular region gets smaller then it means the 
probability of rapid growth gets larger. As discussed 
above, the homoclinic tangling reduces the size of the 
region for the bounded oscillation in the phase plane. 
Thus, the probability of unbounded growth increases 

as the degree of homoclinic tangling increases. 
With a limited but basic understanding on the Poim 

care map mentioned above, let us study the dynamical 
behaviors of a bubble in a time-periodic electric field 
by using Poincare maps. Let us begin with the effect 
of forcing amplitude for a fixed forcing frequency that 
is nearly resonant (0~=2.348 while to,, :: 2.398). In Fig. 
11, the Poincare map for e.=0.05 is given. By compa- 
ring Figs. 8 and 11, we can immediately see that the 
regular region for bounded bubble motion shrinks in 
size significantly. Physically this means that the pro- 
bability of escape to rapid growth increases as the 
amplitude increases, if the initial condition is distribu- 
ted uniformly in the p h a s e  plane. 

As mentioned previously, the dynamics depends 
heavily on the initial condition even for the fixed para-. 
meters such as the average Weber number, amplitude, 
frequency, and the damping coefficient. To see this 

1 

0 

0 20 40  0 8 0  1 O0 

0 . o  ~ ,~ T - -  ~ .............. "I" ] 

0 20 40 60 80 100 

g l  
I .o 

O 5  

OO -4 r ~  1 i ~ 

o 2o  4 o  6 o  8 0  lo0 
t 

Fig. 12. The effect of initial conditions on the bubble dy- 
namics fur the case of nearly resonant forcing 
(c0=2.348) when ~:=0,05, W0=0.0168. 

point, we have plotted &(l) for various cases of initial 
conditions in Fig. 12. The initial conditions considered 
are [-x~(0), x,(0)3 = (0.5, 0), (0.65, 0) and (0.8, 0), and 
other parameters for Fig. 12 are the same as those 
for Fig. 11. When x1(0)=0.5, the initial condition is 
outside the regular region (or equivalently in the ho- 
moclinic tangle region) of the Poincare map in Fig. 
11. As discussed earlier, the bubble exhibits random 
oscillation for a while and eventually escapes to the 
rapid growth stage. On the other hand, when the initial 
conditions are in the regular region [x1(0)==0.65, 0.8~, 
bubble shows two-timing oscillation as we can see in 
Fig. 12. From Figs. 11 and 12, we can see again that 
the size of the regular region can serve as a measure 
for the effectiveness of time-periodic forcing to get 
rapid growth of a bubble. 

As discussed in the subsection for regular dynamics, 
the bubble dynamics in time-periodic electric fMd de- 
pends strongly on the forcing frequency. Especially 
that is the case for the size of the regular region in 
the Poincar~ map. To see this point, the Poincar6 map 
for the case of frequency co==7.05 is given in Fig. 13. 
By comparing Fig. 13 with Fig. 11, we can see that 
the regular region for the bounded oscillation is much 
laNer for the case of ~o=7.05 than the case of co= 
2.348, which is a nearly resonant value. In other 
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0,0 

W = 0.0168 
o = 7 ,05  

= 0,05 

I! ,  / 
{ :  

. . . . . . .  T ~:  ~ i - - - - I  

0,5 1.0 1.5 2.0 
X 1 

Fig, 13. The Poincare map for the case of ~=0.05, l~i,= 
0,0168 when co=7.05. 

1 1 7 ,  
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0 I 0 20 30 40 50 

3 -  ~o = 2.348 
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0 1 0  2 0  3~0 40 50 

Fig. 14. The effect of forcing freqnency on the babble dy- 

namics for the ease o f  ~ = 0 . 1 ,  1#}) = 0.0168,  l /  

Re=O, and initial condition x1(0)=0.65. 

i p 4 ~ ~ -  Re = I 0  I~ 
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Fig. 15. The effect of viscous damping on the bubble d D 
namics for the nearly resonant case (m=2.348) 
when ~2==0,1, D~=0.0168, and initial condition 

xl(O) = 0.65. 

words, the probability of escape to the rapid growth 
stage is much higher in the case of co = 2.348, In order 1o 
see the effect of lk)rcing frequency more clearly, a bub- 
ble is excited with various frequencies starting from 
the rest state at equilibrium. In Fig. 14, several plots 
of &(/) are shown for various forcing frequencies with 
fixed parameters of 14'~=0,0168, ~=0.1, 1~Re=O, and 
Ix1(0), &(0)] = (0,65, 0). From Fig. 14, we can see that 
there exists an optimum value of forcing frequency, 
in the sense of increasing the probability of escape 
from the bounded oscillation. The optimum frequency 
is found to be the value that is slightly lower than 
the intrinsic resonant frequency. 

The eflect of viscous damping on the bubble dynam- 
ics is also considered. In Fig. 15. the bubble dynam- 
ics for different levels of viscous damping are shown, 
The parameters for Fig. 15 are B';~=0.0168, e=0.1, 
m=:2.348, and ~ix,(0), x,(0)] =: (0.65, 0). As we ~m see 
in Fig. t.5, we could get the escape to the rapid growth 
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stage if viscous damping is not sufficiently slrong (see 
the cases of Re= 101'' and 10:). ttowever, as the viscous 
damping is increased further, the bubble dynamics 
is soon attracted to the steady oscillation as we can 
see in the cases for Re= 10=' and 10. 

Thus far, we have considered the effects of time- 
periodic forcing by an electric field when the pressure 
difference is fixed. However, if we remember the 
equivalence of the effects of pressure and electric fie- 
lds, the results in this section can be easily transform- 
ed to the results for the time-periodic forcing by a 
pressure field without an electric field. As mentioned 
earlier, if the characteristic length scale in this prob- 
lem is smaller than O(10 :~) cm, then the intrinsic osci- 
llation frequency is certainly in the ultrasonic wave 
frequency range. Thus. the ultrasonic wave can pro- 
mote the cavitation phenomena as already adopted in 
many applications. However, in some cases, application 
of ultrasonic wave may not be suitable. In those cases, 
time-periodic forcing by an electric field, in a form 
such as E,(t) ~ cosmte,, may be used to protnote cavi- 
tation. For that purpose, finding an optimal frequency 
is vet)' important to maximize the efficiency of the 
time-periodic forcing. 

CONCLUSION 

In the present work, the dynamics of bubble growth 
in a time-dependent electric field has been investiga- 
ted via the modified Rayleigh-Plesset equation where 
the effect of an electric field is added. The effect of 
an imposed electric field was found to be equivalent 
to the increase of the ambient pressure by the amount 
(3/8)~jg~g~(2S-1). This result agrees with the ealier 
finding of Marston and Apfel [2~. 

For a given pressure difference zXP>3.079, there 
are two critical Weber numtlers W,~ and W,, for exist- 
ence of steady solutions. The number of steady solu- 
tions is 0 if W<[E> 2 if I{e~.~<W<~{._,, and 1 if W>I~}{.~... 
However, if zXP<3.079, the smaller critical Weber 
number does not exist. 

The effect of steady electric field has been studied 
via the phase-plane analysis. For a given pressure dif- 
ference, the electric field has an effect to increase 
the size of the domain enclosed by the separatrix in 
the phase-plane, which corresponds to the bounded 
bubble oscillation. Thus, the steady electric field has 
an effect of inhibiting cavitation. The intrinsic resonant 
frequency of oscillation about the stable equilibrium 
radius is also found to increase as the Weber number 
increases due to the obvious reason of shrinking size 
of bubble in an electric field. 

The effects of a time-periodic electric field have 
been studied by using two methods of analysis; two- 
timing perturbation analysis for the regular dynamics 
near the stable steady solution and the Poincar~; map 
analysis for the global dynamics. The two-timing anal- 
ysis revealed that an O(~ 1:~) response in the oscillation 
of bubble radius can be obtained fl-om an O(e) reso- 
nant time-periodic forcing in the neighborhood of a 
stable steady solution. The same behavior has been 
found in the similar problems of bubble or drop dyna- 
mics. 

The Poincar~ map analysis showed that a bubble 
may escape from the trajectories of bounded oscilla- 
tion, which would be taken under steady electric field, 
to rapid growth when the bubble is subject to a time- 
periodic forcing. Thus, tile time-periodic forcing has 
an effect to reduce the size of the domain of the 
bounded oscillation in the phase plane. The Poincar4 
map analysis also showed that the probability of es- 
cape to rapid growth can be maximized by choosing 
an optimal frequency for a fixed amplitude in the time 
periodic forcing. The optimal frequency was flmnd to 
be the value that is slightly lower than the intrinsic 
resonant frequency for small amplitude oscillation in 
a steady electric field. The significance of this finding 
is that a time-periodic electric field may be used to 
promote cavitation while the steady electric field has 
an effect of inhibiting cavitation. Thus, an electric field 
may be used for both inhibiting and promoting cavita- 
tion depending on the purposes. 

Finally, a comment should be given to the possible 
immediate extensions to the present work. In the pre- 
sent work, we have neglected the effect of bubble de- 
formation that results from the non-uniformity of the 
normal stress over the surface produced by an electric 
field. The problem of deformation with constant bub- 
ble volume can be touched by various methods such 
as the domain perturbation method and the raethod 
of spheroidal approximation. The analysis on the com- 
bined effects of the dynamic growth and deformation 
of a bubble subject to an electric field may be the 
next challenge to the present work. 
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